Reverse-transcriptase loop-mediated isothermal amplification has high accuracy for detecting SARS-CoV-2 in saliva and naso/oropharyngeal swabs from asymptomatic and symptomatic individuals

Previous studies have described reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) methodology for the rapid detection of SARS-CoV-2 in nasopharyngeal (NP) and oropharyngeal (OP) swab and saliva samples. This study describes the validation of an improved sample preparation method for extraction free RT-LAMP and defines the clinical performance of four different RT-LAMP assay formats for detection of SARS-CoV-2 within a multisite clinical evaluation. Direct RT-LAMP was performed on 559 swabs and 86,760 saliva samples and RNA RT-LAMP on extracted RNA from 12,619 swabs and 12,521 saliva from asymptomatic and symptomatic individuals across healthcare and community settings. For Direct RT-LAMP, overall diagnostic sensitivity (DSe) of 70.35% (95% CI 63.48-76.60%) on swabs and 84.62% (79.50-88.88%) on saliva was observed, with diagnostic specificity (DSp) of 100% (98.98-100.00%) on swabs and 100% (99.72-100.00%) on saliva when compared to RT-qPCR; analysing samples with RT-qPCR ORF1ab CT values of ≤25 and ≤33, DSe of 100% (96.34-100%) and 77.78% (70.99-83.62%) for swabs were observed, and 99.01% (94.61-99.97%) and 87.61% (82.69-91.54%) for saliva, respectively. For RNA RT-LAMP, overall DSe and DSp were 96.06% (92.88-98.12%) and 99.99% (99.95-100%) for swabs, and 80.65% (73.54-86.54%) and 99.99% (99.95-100%) for saliva, respectively. These findings demonstrate that RT-LAMP is applicable to a variety of use-cases, including frequent, interval-based testing of saliva with Direct RT-LAMP from asymptomatic individuals that may otherwise be missed using symptomatic testing alone.

Back to publications
Publication
Contributors
Kidd S P, Burns D, Armson B, Beggs A D, Howson E L A, Williams A, Snell G, Wise E L, Goring A, Vincent-Mistiaen Z, Grippon S, Sawyer J, Cassar C, Cross D, Lewis T, Reid S M, Rivers S, James J, Skinner P, Banyard A, Davies K, Ptasinska A, Whalley C, Ferguson J, Bryer C, Poxon C, Bosworth A, Kidd M, Richter A, Burton J, Love H, Fouch S, Tillyer C, Sowood A, Patrick H, Moore N, Andreou M, Morant N, Houghton R, Parker J, Slater-Jefferies J, Brown I, Gretton C, Deans Z, Porter D, Cortes N J, Douglas A, Hill S L, Godfrey K M, Fowler V L
Year
2022
Journal
Journal of Molecular Diagnostics
Altmetric details
Associated viruses