Production, characterization, and epitope mapping of a monoclonal antibody against genotype VII Newcastle disease virus V protein
Newcastle disease virus (NDV) V protein is crucial for viral interferon (IFN) antagonism and virulence, determining its host range restriction. However, little information is available on the B cell epitopes of V protein and the subcellular movement of V protein in the process of NDV infection. In this study, the monoclonal antibody (mAb) clone 3D7 against genotype VII NDV V protein was generated by immunizing mice with a purified recombinant His-tagged carboxyl-terminal domain (CTD) region of V protein. Fine epitope mapping analysis and B-cell epitope prediction indicated that mAb 3D7 recognized a linear epitope 152RGPAELWK159, which is located in the V protein CTD region. Sequence alignment showed that the mAb clone 3D7-recognized epitope is highly conserved among Class II genotype VII NDV strains, but not among other genotypes, suggesting it could serve as a genetic marker to differentiate NDV genotypes. Furthermore, the movement of V protein during NDV replication in infected cells were determined by using this mAb. It was found that V protein localized around the nucleus during virus replication. The establishment of V protein-specific mAb and identification of its epitope extend our understanding of the antigenic characteristics of V protein and provide a basis for the development of epitope-based diagnostic assays.