Inter-segment complementarity in orbiviruses: A driver for co-ordinated genome packaging in the Reoviridae?
The process by which eukaryotic viruses with segmented genomes select a complete set of genome segments for packaging into progeny virus particles is not understood. In this study a model based on the association of genome segments through specific RNA-RNA interactions driven by base pairing is formalized and tested in the Orbivirus genus of the Reoviridae. A strategy combining screening of the genomic sequences for inter-segment complementarity with direct functional testing of inter-segment RNA-RNA interactions using reverse genetics is described in the type species of the Orbivirus genus, Bluetongue virus. Two examples, involving four of the ten Bluetongue virus genomic segments, of specific inter-segment interaction motifs whose maintenance is essential for the generation of infectious virus, have been identified. Equivalent inter-segment complementarities were found between the identified regions of the orthologous genome segments of all orbiviruses, including phylogenetically distant species. Specific interaction of the participating RNA segments was confirmed in vitro using a mobility shift assay, with the interactions inhibited using oligonucleotides complementary to the interaction motif of one of the interacting partners, and also through mutagenesis of the motifs. In each example, the base pairing rather than the absolute sequence was critical to the formation of a functional inter-segment interaction, with mutations only being tolerated in rescued virus if compensating changes were made in the interacting partner to restore uninterrupted base pairing. The absolute sequence of the complementarity motifs varied between species, indicating that this newly identified phenomenon may contribute to the observed lack of reassortment between Orbivirus species.